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PREFACE

This interim technical report was submitted by the
University of Dayton Research Institute, Dayton, Ohio, under
Contract F33615-80-C-5011, "Quick Reaction Evaluation of
Materials," with the Materials Laboratory of the Air Force
Wright Aeronautical Laboratories, Wright-Patterson Air Force
Base, Ohio.

This effort was conducted during the period of May 1980
through February 1981. The author, Mr. Russell R. Cervay,
would like to extend special recognition to Mr. Donald W.
Woleslagle of the University of Dayton for painstaking
care and diligent attention he demonstrated in generating
the fatigue crack growth test data presented herein.

This report was submitted by the author in August 1981.
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SECTION I
BACKGROUND

A simple empirical mathematical model for constant ampli-
tude loading fatigue crack growth rate (FCGR) test data is very
useful for predicting the crack growth rate for a particular
material at a condition where test data are nonexistent. 1In
this manner the necessity for generating data at a particular
unexamined test condition is circumvented. There are several
such models already in existence that vary in their degree of
complexity and their degree of success in predicting test data
results.

Reference 1 presents constant amplitude loading FCGR
test results fer tests conducted at several different loading
ratios (R-ratio = minimum load/maximum load), on two aluminum
alloys, 7075-T6 and 2024-T3. That program considered and
applied several different empirical mathematical models for
the generated test data, one of them being the Paris equation:

da/dn = CAKM™ (1)

where da/dn is the crack extension per load cycle and AKX is

the stress intensity range. The reference always used a fixed
value for the Paris exponent, m, equal to 4.00 in fitting a

Paris line to the data generated at the various loading ratios.
The table presented in the above reference listing the Paris
coefficients, C, for the lines fitted to the various R-ratio

data sets is duplicated in Table 1 along with one additional
column being added, the logarithm of the Paris coefficient, log C.

If R-ratio and log C listed in Table 1 are plotted on
a linear set of axes, for both materials examined in the
referenced effort, the points closely approximate straight
lines (see Figure l). The sole exception is the coefficient

-% for the 7075 material with an R-ratio equal to or less than a
value of zero.
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TABLE 1 i

PARIS COEFFICIENT, C, FOR ALUMINUM ALLOYS :
7075-T6 and 2024-T3 .
(Table Reproduced from Reference 1) .

3 ‘ 4*

da/dn = CAK

Material R C log C

7075-T6 <0.00 5.52x10~21 -20.26
0.20 6.44x1021 -20.19
0.33 1.00x10™20 -20.00
0.50 1.80x10"20 -19.74
0.70 3.95x10~20 ~19.40
0.80 6.84x10"20 -19.16

-21

2024-T3 <0.00 2.14x10 -20.67
0.33 5.40x10" 21 -20.27 1
0.50 7.75x10" 21 -20.11
0.70 1.24x10720 -19.91

* The crack growth rate, da/dn, is in terms of inches
per cycle, while the stress intensity range, AK, is
in terms of PSI Vin.
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SECTION II
INTRODUCTION

The empirical mathematical model for FCGR test data
examined in this program is found in the Paris model; for
that reason it can only be extended to the Paris data region,
i.e., that portion of the test data where a straight line can
fairly represent the FCGR data when it is plotted on a log-
stress intensity range versus a log-crack growth rate set of
axes. The threshold and the rapid crack velocity regions are
not considered in this effort.

The mathematical model for room temperature FCGR test
data discussed herein examines the variation of the Paris
equation constants, exponent and coefficient, in response to
varying loading ratio, R, using aluminum alloy 7010-T73651
plate material. The questions to be addressed in this program
are: (1) If the exponent, m, is allowed to freely vary along
with the coefficient, C, in determining the best-fit Paris
straight line to a data set at various loading ratios, will
a straight line still model a plot of loading ratio versus
the log cf the calculated Paris coefficients? and (2) If the
answer to question (1) is yes, can the mathematical model be
made more tractable by fitting a straight line to those same
R-ratio data sets with the Paris exponent, m, fixed equal to
the average value of the exponents derived in answering guestion
()2
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SECTION III
TEST MATERIAL

The test material was aluminum alloy 7010, which was pro-
vided in the T73651 overaged and cold-worked heat treatment.
The 2-inch (50.8 mm) thick rolled plate was produced and fur-
nished by Alcan Plate Limited, Birmingham, England. The
material's chemical composition is very similar to Alcoa alloy
7050; the chemical compositions of the two alloys are presented
in Table 2. Both alloys use 2r as the grain refiner rather
than Cr which is more commonly used in other alloys. Both alloys
(7010 and 7050) were developed for applications reguiring high
strength, high fracture toughness, exfoliation corrosion resistance,
and stress corrosion cracking resistance in thick section product
forms, e.g., 2 to 4 inch (50.8 to 101.6 mm) thick rolled plate.
The test results of a more extensive mechanical property test
program conducted on this particular plate is presented in
Reference 2. One observation made during the FCGR testing portion
of the referenced program was that test data for specimens with
L-T or T-L grain orientations plotted in a narrow, well defined
data scatter band. This characteristic was anticipated to be
a valuable ally in formulating a simple mathematical model of
the data based on a minimum number of completed tests.

TABLE 2
CHEMICAL COMPOSITION, WT. PERCENT

Zn_ Mg Cu 2Zr si Fe Ti Mn Cr Other Al

7010 Test 6.0 2.3 1.9 0.12 0.09 0.07 0.01 <0.01 <0.01 <0.01 Balance
Material

Alcan

5.7- 2.2- 1.5- 0.11- 0.10 0.15 0.05 0.03 0.0%5 0.03 Balance
7010 Spec. 6.7 2.7 2.0 0.17 Max Max Max Max Max 0.15 tot.
7050 5.7- 1.9- 2.0- 0.08- 0.12 0.15 0.06 0.10 0.04 0.05 Balance
Mil Spec. 6.7 2.6 2.6 0.15 Max Max Max Max Max 0.15 tot.




The average tensile and fracture toughness

in Reference 2 are represented here in Tables 3 and 4.

TABLE 3

AVERAGE TENSILE PROPERTIES OF Al17010-T73651
All Tests Performed at 72°F (22°Q)

properties for the piece of test material which were presented

* Elongation in a 1 inch (25.4 mm) gage length.
** Elongation in a 0.5 inch (12.7 mm) gage length.

TABLE 4

AVERAGE FRACTURE TOUGHNESS TEST RESULTS FOR
ALUMINUM ALLOY 7010-T73651

Test
Test Temperature Kq ASTM
Orientation °F (°C) KSIVin (MPavm) Valid?
L-T 72 (22) 37.5 (41.2) Yes
L-T 250 (121) 38.7 (42.6) Yes
T-L 72 (22) 30.0 (33.0) Yes
T-L 250 (121) 29.0 (31.9) No
T-S 72 (22) 31.1 (34.2) Yes
T-S 250 (121) 32.8 (36.0) No
L-S 72 (22) 39.9 (43.9) No
L-§ 250 (121) 40.8 (44.8) No
’ S-L 72 (22) 23.1 {25.4) Yes

AN N
Lh""‘L-n—muhuhﬁn-ﬂ-‘-‘.--ﬂ.-ﬂ.-.-......-...‘-.“.-.
A - i e

Ultimate 0.2% Yield %

Grain Strength Strength Elongation Reduction
Orientation KSI (MPa) KSI (MPa) (%) of Area
Longitudinal 73.7 (508) 64.4 (444) 12,9* 36.2
Long-
Transverse 73.7 (508) 63.0 (434) 12.4%* 33.2
Short-
Transverse 73.4 (506) 65.0 (448) 7.9%% 13.0




SECTION IV
TEST PROGRAM AND SPECIMENS

All of the FCGR tests discussed in this report were
conducted in accordance with ASTM testing procedure E647-78T,
"Constant-Load-Amplitude Fatigue Crack Growth Rates Above
10-8 m/cycle." All tests were completed in a room temperature
laboratory air environment.

Tests were conducted at loading ratios, R, equal to
0.1, 0.3, 0.5, and 0.8. Based on these test results a pre-
dictive Paris equation was formulated for a loading ratio equal
to 0.65 prior to generating test data at that loading ratio.
The loading frequency for the data, previously presented in
Reference 2, with a loading ratio equal to 0.1 was 20 Hz; all
the remaining tests were conducted at 10 Hz. This was necessary
in order to accurately maintain the application of a sinusoidal
loading wave form to the smaller load train used in this effort.

The test data for a loading ratio equal to 0.1 was generated
using the larger specimen configuration presented in Figure 2.
All of the remaining test specimens were machined from failed
open, large fracture toughness test specimens which were
remanents of the Reference 2 program; using these small scraps
as a source of test material necessitated using a smaller test
specimen for this effort. The smaller CT specimen configuration
in Figure 2 was used for all of the remaining loading ratios.
All of the test data were generated using CT test specimens

with L-T grain orientation.
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Figure 2. Compact Type Test Specimen Used in Generating
Constant-Load-Amplitude FCGR Test Data.
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SECTION V
RESULTS AND DISCUSSION

The constant amplitude loading fatigque crack growth test
results for loading ratios equal to 0.1, 0.3, 0.5, and 0.8 are
presented in Figures 3 through 6. The crack growth rate range
that was considered for fitting the straight line was from
1.0 x 10”7 in./cycle (2.54 nm/cycle) to 1.0 x 10~4 in./cycle
(2540 nm/cycle). For the remainder of the discussion the
crack growth rates are in terms of inches per cycle, while the
stress intensity range is in KSI¥in. 1In determining the best
fit Paris straight line, as illustrated in Figures 3 through 5,
both the Paris exponent, m, and the Paris coefficient, C, were
allowed to freely vary. The four Paris equations (2 through 5)
representing each data set are presented below.

Loading Ratio Paris Equation
0.1 da/dn = 6.46 x 10710 Ax3-7% (2
0.3 da/dn = 1.74 x 1072 ax3-90 (3)
0.5 da/dn = 2.67 x 1072 ak3-97 (4)
0.8 da/dn = 7.18 x 10~2 ax3-70 (5)

The log-Paris coefficient, log C, for the four data sets
are plotted in Figure 7 as a function of loading ratio, R.
The four points are distributed around a straight line defined
by egquation (6).

log C = 1.438R - 9.277 {6)

If the logarithm of both sides of the Paris equation (1) is
taken it becomes equation (7).

da/dn = CAK™ (1)

log da/dn = log C + m log AK (7)
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Figure 3. Room Temperature, Loading Ratio = 0.10 FCGR Test
Data for Al 7010-T73651.
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The empirical equation just derived for the Paris coefficient
as a function of loading ratio, equation (6),can now be sub-

stituted into equation (7),

log da/dn = 1.438R - 9.277 + m log AK (8)

Again the Paris exponent, m, for the four best-fit straight

lines corresponding to the four loading ratios under considera-
tion are presented below.

PARIS EXPONENTS
{All Tests Conducted at 72°F (22°C)]

Paris Exponent, m

Loading Ratio, R

0.1 3.74
0.3 3.60
0.5 3.67
0.8 3.70

The average value, m, is equal to 3.68. The maximum value among

the four exponents is 3.74 and the minimum value is equal to

3.60, representing a range equal to + 2 percent of the average

value Paris exponent, m. By substituting the average Paris
exponent, m = 3.68, into equation (8) and taking the antiloga~-
rithm of both sides of the resulting expression a generalized

expression, equation {9) is derived:

1.438R - 9.277 + 3.68 log AK

"

log da/dn

da/dn = 10(1.438R—9.277) AK3.68 (9)

This expression for the test material aluminum alloy 7010-
T73651 is applicable for a loading ratio range from 0.1 to 0.8
in a 72°F (22°C) laboratory air test environment.

15




The best-fit straight lines were then again determined
for the same R-ratio data sets of stress intensity range and
corresponding crack growth rate with the Paris exponent, m,
fixed at the average value, m = 3.68, and only the Paris
coefficient, C, free to vary. The four new equations (10
through 13) corresponding to the four loading ratios are as

follows:
PARIS EQUATIONS
[All Tests Conducted at 72°F (22°C)]
Loading Ratio, R Paris Equation
0.1 da/dn = 7.28 x 10710 ax3-6®  (10)
0.3 da/dn = 1.47 x 10~ 2 ak3-68 (11)
0.5 da/dn = 2.61 x 10°2 ak 3-8 (19
0.8 da/dn = 7.31 x 10~ ak>-98 (13)

The log-Paris coefficients for these four equations are plotted
in Figure 8 (square symbol) along with the coefficients pre-
viously discussed (triangular symbol in Figure 7) that were
calculated by letting both the coefficient and exponent freely
vary in fittihg a Paris straight line. This latter approach
results in calculating Paris coefficients that plot with a much
narrower scatter band. The best-fit straight line to these

new Paris coefficients is:

log C = 1.418R ~ 9.275 (14)

This equation is very close to equation (6). For the
scale employed in Figure 8, visual detection of the two lines'
separation occurs at a loading ratio approximately equal to
0.5 and they continue to separate at a shallow angle with

increasing loading ratio.

Once again starting with equation (8) and using
equation (14) and the average Paris slope, m = 3.68

16
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log da/dn = log C + m log AK (8)
log C = 1.418R - 9.275 (14)

log da/dn = (1.418R - 9.275) + 3.68 log 4K

and then taking the anti-logarithm of both sides of this equa-
tion a second generalized expression, equation (15), can be
derived

n = l0(1.418R—9.275)AK3.68

da/d (15)

This expression is quite close to equation (9) and for the test
material also covers all loading ratios over the range from
0.10 to 0.80 in a 72°F (22°C) laboratory air test environment.

The largest gap in the R-ratio data sets was between
the loading ratios equal to 0.5 and 0.8; a loading ratio
in the middle of this gap, R = 0.65, was selected as a test
case for the two generalized expressions, eguations (9) and

(15) the resulting predictions are equations (16) and (17).

dajan = 10(1-438R-9.277)  3.68 (9)
R = 0.65; da/dn = 4.547 x 10 9ak3-08 (16)

dasdn = 10(1-418R-9.275),.3.68 (15)
R = 0.65; da/dn = 4.436 x 10-2ak3-68 (17)

When the lines corresponding to equations (16) and (17)
are plotted on the axis scale used throughout this report the
two lines appear indistinguishable. Therefore, it was con-
cluded that the additional calculations of fitting the best~fit

Paris equation with the exponent fixed equal to m = 3.68 was
' superfluous for the test material and for the remainder of

this discussion only equation (16) is used.

Two experimental approaches were taken to verify that the
prediction, equation (16), would accurately represent data at

the test-case an R-ratio equal to 0.65.
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First, since the exponent m of the series of Paris equations
has already been satisfactorily determined, to empirically
establish a verifying equation with a set of data only the
Paris coefficient need to be accurately determined experimentally.
This curtails the necessity for generating a large range of
data at an R-ratio of interest. Using this approach, two
specimens were tested at a loading ratio equal to 0.65. To
minimize test time an initially high stress intensity range
received primary attention with the sole exception of one
data point at a low stress intensity range that was established
immediately following crack initiation of one of the specimens.
The combined test results are presented in Figure 9. The line
in Figure 9 represents the best-fit equation with the exponent
fixed equal to m = 3.68. The equation that defines the line
in Figure 9 is:

da/dn = 4.28 x 10~9 Ak3-68 (18)

The lines representing the predictive equation (16) and the best-
fit, fixed-exponent equation (18) to the actual test data are

virtually indistinguishable.

Encouraged by this success an alternate approach was under-
taken to verify the prediction equation (16). A third specimen
was tested at a loading ratio equal to 0.65 but with an initial
crack velocity of approximately 4 x 10°7 in./cycle (11.18 nm/cycle).
The test results for this single specimen are presented in
Figure 10. The solid line in Figure 10 represents the best-fit
equation to this second data set which is:

da/dn = 4.09 x 10~2 aAg3-65 (19)

and was calculated with both the Paris exponent and coefficient

free to vary. The dashed line represents the predictive equation

% (16) which plots very close to and almost parallel to the solid

o line representing equation (19). The shift from the line
representing the prediction, equation (16) to that line repre-
senting the best-fit equation to the data set, equation (19),

19
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Figure 9. Fast Crack Growth Rate Region, Room Temperature,
Loading Ratio = 0.65, FCGR Test Data for Al 7010-
T73651.
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is small when compared to the large shift from the best-fit
line to the 0.5 R-ratio data set to that of the 0.8 R-ratio
data set.




SECTION VI
CONCLUSIONS

For constant amplitude loading FCGR data for various
positive loading ratios, the Paris coefficient for the
linear region of the growth rate curve can satifactorily
be modeled as a log-linear straight line relationship,
i.e., R-ratio versus log-Paris coefficient.

The accuracy of the mathematical model was not signifi-
cantly altered in recalculating the best-fit straight
line to an R-ratio data set with the Paris exponent

fixed equal to the average value of the individually
calculated exponents, m, for the various R-ratio data
sets. The extra calculations became unnecessary for the
test material because the approach yielded a predictive
Paris equation practically co-located with the prediction
based on preliminary lines fitted with both the Paris

exponent and ccefficient free to vary.
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